Low-Rank Matrix Recovery with Structural Incoherence for Robust Face Recognition

Chih-Fan Chen, Chia-Po Wei and Yu-Chiang Frank Wang Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan

Motivation and Contribution

- Real-World Face Recognition (FR)
 (1) BOTH training and test data might be corrupted.
 (2) No prior knowledge on the type of corruption.
 (e.g., sunglasses, mask, etc.).
- Our Proposed Method
 (1) Low-Rank Matrix Decomposition (LR)
 - Extract representative features for each class.
 (2) Structural Incoherence (SI)
 -> Introduces discriminative features for classification.

SRC for Face Recognition?

- SRC (Sparse Representation-based Classification)
 (1) Sparse representation of input data:
 \[\min_j \| D_{jk} - A_j \|_F \] (1)
 (2) Classification via class-wise reconstruction error:
 \[j' = \arg \min_j \| D_{jk} - A_j \|_F \] (2)
 (3) SRC tends to recognize the test input as the class with the most similar training images.
- SRC for Real-World FR?
 (1) SRC requires unoccluded training images for face recognition.
 (2) It would fail if both training and test data have similar types of corruption.

Face Recognition by Low-Rank Matrix Recovery

- Robust PCA (Low-Rank Matrix Recovery)
 Decompose original data \(D \) into a LR matrix \(A \) and a sparse error matrix \(E \), so that \(A \) has a better representational ability than \(D \).
 \[\min \| A \|_F + \lambda \| E \|_F \quad \text{s.t.} \quad D = A + E \]
- LR for Face Recognition
 (1) Derive \(A \) by performing LR for each of the \(N \) subjects.
 (2) Perform subspace learning (e.g., PCA) on \(A \) instead of \(D \).
 (3) Project training and test data onto the subspace of \(2 \) and apply SRC for classification.

LR Matrix Decomposition with Structural Incoherence

- We advocate the structural incoherence between the low-rank matrices of different classes.
 (1) We formulate LR matrix recovery with regularization on SI.
 \[\min \| A \|_F + \lambda \| E \|_F + \gamma \| D_{jk} - A_j \|_F \quad \text{s.t.} \quad D_{jk} = A_j + E \]
 (2) For each class, we solve the following relaxed version.
 \[\min \| A \|_F + \lambda \| E \|_F + \gamma \| D_{jk} - A_j \|_F \quad \text{s.t.} \quad D_{jk} = A_j + E \]
 (3) Iteratively solve (2) via Augmented Lagrange Multipliers.
 \[L(A, E, y, y_j) = \| A \|_F + \lambda \| E \|_F + \gamma \| D - A - E \|_F \]
- Visualization (Extended YaleB)
 Projected face data in the subspace spanned by the first two eigenvectors.

Extended YaleB Database (Illumination)

- 38 subjects, 59-64 images each.
 (1) Randomly select 37 images for training.
 (2) Compare to NN, SRC, LLC-SRC and LR w/o SI.

AR Database (Illumination/Expression/Occlusion/Disguise)

- Image of 100 subjects (50 men + 50 women) taken in 2 separate sessions.
 - Each session consists of 7 neutral (illumination and expression), 3 sunglasses and 3 scarf images.
 (1) Sunglasses + Neutral + 1 sunglass + 1 scarf
 (2) Scarf: 7 neutral + 1 scarf
 (3) Sunglasses + Scarf: 7 neutral + 1 sunglasses + 1 scarf
 - Testing: the remaining images of session 1 and 2.
 - Compared to NN, Fishface, SRC, LLC-SRC and LR w/o SI.

Conclusions

- We present a low-rank matrix recovery algorithm with structural incoherence for robust face recognition.
- The proposed SI introduces additional discriminating ability for improved recognition.
- Experiments confirm the effectiveness and robustness of our approach under a variety of variations/corruptions.