
1973978-1-4244-7994-8/10/$26.00 ©2010 IEEE ICIP 2010

Proceedings of 2010 IEEE 17th International Conference on Image Processing September 26-29, 2010, Hong Kong



Fig. 1. The flow chart of our single-image SR approach.

2.1. Image Patch Categorization

In the training stage of our method, we first collect high and

low-resolution image pairs. To achieve better SR perfor-

mance, we do not train a single SVR on all image patch pairs

as [12] did. We propose to learn separate SVR models for

high and low spatial frequency patches, respectively.

For a low-resolution image, we first use bicubic inter-

polation to synthesize its high-resolution version. We ex-

tract all 5 x 5 patches from this synthesized image. To deter-

mine whether each patch corresponds to regions with high or

low spatial frequencies, we perform over-segmentation on the

original low-resolution image to locate pixels on the bound-

aries or corners. The associated pixels in the synthesized im-

age are those with more texture details (and with missing in-

formation), and thus correspond to regions with high spatial

frequencies. Next, if the center of an extracted patch from

this synthesized image is a part of image edges or corners,

that image patch will be categorized as the set of regions with

high spatial frequencies; otherwise, it belongs to the set of

those with low spatial frequencies. Our experimental results

will show that, compared to the method using only one SVR

model, this step improves the SR results.

In our work, we exploit Mean Shift algorithm [13] to over-

segment the image for the determination of the above image

patch sets (see Fig. 2 for example). We note that we do not

limit our method to the use of any specific segmentation al-

gorithm, and one could perform other types of edge detection

or Fourier transform methods for this process.

2.2. Sparse Representation of Image Patches

Instead of working directly with the image patches sampled

from low resolution images, we learn compact representations

Dh and Dl for patches with high and low spatial frequencies,

respectively. This is motivated by recent progresses in com-

pressed sensing, and the field of image processing has been

one of the main beneficiaries from this theory.

In the training stage, we apply the sparse coding tool de-

veloped by [14] to learn the dictionaries Dh and Dl. We de-

termine the associated sparse coefficient vectors αh and αl,

which minimize the reconstruction error with a small num-

ber of non-zero coefficients. Since the optimization of sparse

coding is beyond the scope of this paper, we only briefly dis-

cuss this step. Considering high spatial-frequency patches for

example, the sparse coding problem can be formulated as

Fig. 2. Image patch categorization. Left: the original image.

Middle: The over-segmented result. Right: High-resolution

image by bicubic interpolation. The red (blue) rectangle de-

notes an example high (low) spatial frequency patch.

min ‖αh‖1 s.t. ‖Dhαh − yh‖22 ≤ ε, (1)

where yh is the training image patch, Dh is an over-complete

dictionary to be determined, and αh is the sparse coefficient

vector. A small and positive ε takes into account the possibil-

ity of noise present in image data. Equivalently, we solve the

optimization problem below

min
1

2
‖Dhαh − yh‖22 + λ‖αh‖1, (2)

where the Lagrange multiplier λ balances the sparsity of αh

and the l2-norm reconstruction error. Similar remarks apply

to the learning of Dl for low spatial-frequency patches.

Once the above process is complete, we use the sparse

coefficients αh and αl as the features for our SVR models,

which learns the mapping functions between these input fea-

tures and the associated pixel labels in high-resolution im-

ages. In testing, we first calculate the αh and αl of the test im-

age, and use the predicted outputs to refine its high-resolution

version. Details of the SVR learning and prediction processes

are discussed in the next subsection.

2.3. Support Vector Regression

2.3.1. SVR Learning

Support vector regression (SVR) [15] is the extension of sup-

port vector machine. Using kernel tricks, the task of SVR is to

use nonlinear functions to linearly estimate the output func-

tion in high-dimensional feature space. Similar to SVMs, the
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generalization ability makes the SVR very powerful in pre-

dicting unknown outputs.

In training, our SVR solves the following problem

min
w,b,ξ,ξ∗

1

2
wTw + C

n∑

i=1

(ξi + ξ∗i ) (3)

s.t. yi − (wTφ(αi) + b) ≤ ε+ ξi,

(wTφ(αi) + b)− yi ≤ ε+ ξ∗i ,
ξi, ξ

∗
i ≤ 0, i = 1, ..., n.

We note that y is the associated pixel label (at the same

location as the center of the patch considered) in the high-

resolution image, n is the number of training instances, φ(αi)
is the sparse image patch representation in the transformed

space, and w represents the nonlinear mapping function to

be learned. C is the tradeoff between the generalization and

the upper and lower training errors ξi and ξ∗i , subject to a

threshold ε. We note that Gaussian kernels are used in all our

SVRs, and their parameters are selected via cross validation.

It is worth mentioning that, in our implementation, we

subtract the mean value of each patch from its pixel values

before calculating the sparse coefficient α; this mean value

is also subtracted from the corresponding pixel label y in the

high resolution image. This is because our proposed method

suggests the learning of local pixel value variations, not the

absolute pixel value output. In testing, the mean value of each

patch will be added to the predicted output pixel value y.

2.3.2. SVR Prediction

After the SVR models for high and low spatial frequency

patches are learned, we use them to predict the high resolution

image of a given low-resolution test input. As the progress

shown in Fig. 1, we first synthesize the high resolution ver-

sion of the test input using bicubic interpolation, and catego-

rize all image patches accordingly (as discussed in Sect. 2.1).

Based on the categorization results, we use the training dic-

tionary Dh or Dl to calculate the corresponding the sparse

coefficient vector α for each image patch. Finally, we update

the pixel values in the synthesized image using the previously

learned SVRs in sparse representation domain and obtain the

final SR image.

3. EXPERIMENTAL RESULTS

Images from the USC-SIPI database are used in our experi-

ments (http://sipi.usc.edu/database). We start with the origi-

nal images as high-resolution versions, and degrade them in

a manner that is similar to the degradation we plan to undo

in the images to be super-resolved. It is worth repeating that

we do not limit our approach to any specific category of im-

ages; we only use the high and low-resolution image pair of

lena for training, and the learned SVR models are used to

super-resolve all test images. The SVR model is trained by

LIBSVM [16], and dictionaries for image sparse representa-

tion are learned by the algorithm developed by [14]. We use

Table 1. PSNR values of test images using different methods.

Training time TTr for each SR method is listed (in min.).
boat bridge person cars skyView TTr

Bicubic 20.09 18.40 19.05 21.94 17.24 N/A

SVR [12] 20.76 18.73 19.70 22.62 17.67 ∼ 40

SC+SVR 21.13 18.96 20.16 22.91 18.19 ∼ 10

SC [11] 20.77 19.32 20.74 21.23 18.18 ∼ 660

Our method 21.20 18.97 20.19 22.92 18.11 ∼ 3.5

the Matlab function imresize to synthesize high-resolution im-

ages with bicubic interpolation.

The PSNR values of five different test images are reported

in Table 1 (the magnification factor is 2). To compare our

approach with baseline and existing learning-based SR meth-

ods, we consider bicubic interpolation, SVR in pixel domain

[12], the proposed SVR with image sparse representation

without image patch categorization, and sparse-coding based

SR method of Yang et al. [11] (denoted as bicubic, SVR,

SC+SVR, and SC in Table 1, respectively). It is worth noting

that the number of training images in the SR package devel-

oped in [11] is nearly one hundred. However, our approach,

while using only one training image of lena, still gave bet-

ter or comparable PSNR results. Moreover, comparing with

bicubic interpolation, we achieved an improvement of 3.1%

to 6% in PSNR, while only about 1.2% improvement was

reported in [9] (which applied SVR for SR in DCT domain).

Fig. 3 shows example high-resolution images of the ground

truth and those synthesized by different methods.

We now discuss the training time of the above learning

based SR methods. All learning-based SR methods only use

the same training image pair to produce the SR results except

for the method of [11], and thus it is not surprising that [11]

required significantly longer computation time to learn their

SR models (see Table 1. We also note that, learning a single

SVR using all image patches in pixel domain is very compu-

tationally expensive, and our approach required the shortest

training time among all learning-based methods. The run-

time estimates in Table 1 were obtained on an Intel Quad

Core PC with 2.33GHz processors and 2G RAM.

Finally, we conduct a more challenging experiment with a

larger magnification factor of 4. We use the image of boat for

our tests, and the SR results using bicubic interpolation and

our method are shown in Fig. 4. We found that, comparing

to the bicubic interpolation, we improved the PSNR by 9%

(20.92 vs. 19.19). As can be seen from Fig. 4, our sparse-

representation based SVR method produced a SR image with

less noise and artifacts than the bicubic interpolation does.

4. CONCLUSION

A novel single-image super-resolution framework based on

learning sparse image representation with SVR is proposed

in this paper. Given a low resolution image, we use sparse

representation to extract image patches corresponding to low

and high spatial frequencies, and learn the associated SVR

models to refine the pixel labels in its high resolution version.
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(a) Ground truth (b) Bicubic interpolation (c) Our method

Fig. 3. Example high-resolution images. Note that the face regions are scaled for detailed comparisons.

(a) Bicubic interpolation (b) Our method

Fig. 4. High resolution images magnified by a factor of 4.

The PSNR values are (a) 19.19 and (b) 20.92. Both images

are scaled for illustration.

Our approach produced very attractive SR images with better

PSNR than those with bicubic interpolation or other leaning-

based methods. Compared to prior SR methods using SVR,

the complexity of our method is significantly reduced due to

the use of sparse image representation.

Future research will be directed at extensions of our ap-

proach to multi-scale SR problems (i.e. larger magnification

factors). Another interesting point observed during our exper-

iments is that, our SVR models are not limited to same-scale

SR problems. Specifically, we found that this SC+SVR ap-

proach is able to super-resolve input images at other higher

resolutions with excellent PSNR values. We will also pursue

the study of this issue in our future work.
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