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ABSTRACT
Many real-world visual classification tasks require one to
recognize test data in a particular domain of interest, while
the training data can only be collected from a different do-
main. This can be viewed as the problem of unsupervised
domain adaptation, in which the domain difference and the
lack of cross-domain label/correspondence information make
the recognition task very difficult. In this paper, we pro-
pose to exploit the cross-domain data correspondence using
both observed data similarity and labels transferred from the
source domain. This allows us to perform distribution match-
ing for cross-domain data with recognition guarantees. Our
experiments on three different cross-domain visual classifi-
cation tasks would confirm the effectiveness of our method,
which is shown to perform favorably against state-of-the-art
unsupervised domain adaptation approaches.

Index Terms— Unsupervised domain adaptation, trans-
fer learning, cross-domain visual classification

1. INTRODUCTION

Most pattern recognition methods assume that training and
testing data exhibit the same or similar feature distributions.
Unfortunately, this scenario might not be practical for real-
world applications. For example, one might need to recog-
nize images at a particular view, while the training ones are
captured by cameras at distinct views or with different resolu-
tions [1]. In such cases, training and test data are considered
to be in different domains, and a bias (or mismatch) between
their feature distributions can be observed. As a result, fea-
tures/classifiers learned from the source domain cannot be ex-
pected to generalize well to the test data in the target domain.

To overcome the domain mismatch problem, researchers
advance the technique of domain adaptation for cross-domain
classification [2, 3]. Domain adaptation is to associate source
and target domain data by eliminating the domain bias. De-
pending on the number of labeled data available in the target
domain, the tasks of domain adaptation can be divided into
different categories [3, 4, 5, 6, 7]. In this paper, we focus on
the challenging problem of unsupervised domain adaptation,
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Fig. 1. Unsupervised domain adaptation using (a) feature-matching
based methods (e.g., [6] or [14]) and (b) ours. Note that meth-
ods like [6] or [14] match cross-domain distributions with global
means, while ours is able to exploit cross-domain data correspon-
dences (shown in connected lines) with recovered label information.

in which one is able to collect labeled data in the source do-
main data while only unlabeled test data can be observed in
the target domain.

Generally, two strategies exist for unsupervised domain
adaptation [2, 7]: instance reweighting [8, 9] and feature
matching [10, 11, 12, 13]. The former advocates the weight-
ing of source domain instances for compensating the domain
bias. While this strategy is applicable when both source
and target domain data are of the same type of features, the
correspondences between cross-domain data and their contri-
butions are not exploited during the reweighting process.

On the other hand, feature-matching based methods aim
at relating cross-domain data distributions in a transformed
space. Among existing approaches, Maximum Mean Dis-
crepancy (MMD) [15] has been widely applied to measure
the difference between the transformed cross-domain data.
For example, Pan et al. [6] proposed the Transfer Component
Analysis (TCA) to adapt the marginal distributions of cross-
domain data. It is achieved by matching the global means of
the low-dimensional kernel embedding of cross-domain data.
Extended from TCA, Long et al. [7] presented the Joint Dis-
tribution Adaptation (JDA) to further associate the joint dis-



tributions of cross-domain data by matching both their global
and class-wise means. While these approaches allow source
and target domain data of different types of features, the direct
use of global and class-wise means for distribution matching
might not always be preferable.

To address the limitations of instance reweighting and fea-
ture matching based techniques, we propose a novel approach
for solving domain mismatch problems, as illustrated in Fig-
ure 1. Our proposed algorithm can be viewed as a unified
formulation which solves instance reweighting and feature
matching tasks simultaneously. Inspired by the concept of
pseudo labels for domain adaptation [7], our method is able
to observe the similarities of candidate source and target do-
main data pairs by learning correspondence transformation
between cross-domain data. Such correspondence informa-
tion is applied for perform matching at the instance level,
while the associated pairwise weights can be derived. As a
result, we are able to disregard possible outlier data during the
adaptation process. In addition, since the distribution match-
ing is performed at the instance level, domain mismatch can
be better eliminated.

We now summarize our contributions as follows:

• We uniquely integrate the concepts of instance reweight-
ing and feature matching for unsupervised domain adaptation.
The derived correspondence transformation is able to asso-
ciate cross-domain data, so that cross-domain classification
can be performed accordingly. (Section 2)

• We conduct experiments on benchmark cross-domain im-
age classification datasets. We verify the effectiveness and ro-
bustness of our method, which is shown to perform favorably
against several state-of-the-art unsupervised domain adapta-
tion methods. (Section 3)

2. OUR PROPOSED METHOD

2.1. Problem formulation

We now define the problem to be solved, and introduce the
notations which will be used in this paper. For unsupervised
domain adaptation, we have source domain training data XS :
{xsi}i=1:Ns with their corresponding labels {ysi}i=1:Ns

2
(1, . . . , C). As for the target domain, only unlabeled test
data can be observed, i.e., XT : {xtj}j=1:Nt . For the tasks
of cross-domain image classification, we consider that both
source and target domains contain the same C classes of in-
terest, and the instances in both domains have the same type
of features of dimension m. Based on the above settings, the
goal of our work is to predict the labels of each data point in
the target domain, denoted by ytj .

To eliminate the differences between domains without ob-
serving any target domain labels, we derive feature transfor-
mations fs and ft for mapping cross-domain data into a com-
mon space, in which the distance between the source and tar-

get domain data is minimized. In other words, we solve:

(f⇤
s , f

⇤
t ) = arg min

fs,ft
Dist(fs(XS), ft(XT )), (1)

where Dist(·, ·) denotes the distance between transformed
cross-domain data. Ideally, solving (1) indicates that one
would match the distributions of cross-domain data in the
derived common feature space. As noted in Section 1, ex-
isting instance reweighting approaches did not observe the
correspondence between cross-domain pairs when eliminat-
ing the domain difference, while feature matching methods
like TCA [6] or JDA [7] solve the above matching problem
using only global and/or class-wise means.

Aiming at determining cross-domain data correspondence
for improved distribution matching, we propose to solve the
following optimization problem:

(f⇤
s , f

⇤
t ) = arg min

fs,ft

NsX

i=1

NtX

j=1

wij kfs(xsi)� ft(xtj )k2, (2)

where the weight wij (to be learned) determines the impor-
tance of the correspondence (xsi ,xtj ) (i.e., the cross-domain
data pairs i and j). We view W 2 RNs⇥Nt as the similar-
ity matrix, in which each entry wij denotes the associated
weight. In the next subsection, we will explain how we derive
W and the feature transformations (fs, ft).

2.2. Learning Cross-Domain Correspondences

2.2.1. Deriving the similarity matrix W

When assessing the correspondence between source and tar-
get domain data in the transformed space, we consider the
cross-domain data pairs with higher similarities to be assigned
with larger weights. Recall that, for unsupervised domain
adaptation, neither instance correspondence nor label infor-
mation is available for target-domain data. Thus, we advance
the pseudo labels inferred from the source domain for predict-
ing the target domain labels [7].

In our work, we use the classifiers learned from the source
domain to assign pseudo labels ỹtj for target-domain data.
And, we calculate the correspondence weight as follows:

wij =

(
exp(��kfs(xsi)� ft(xtj )k), if ysi = ỹtj

0, otherwise.
(3)

It is worth noting that, the parameter � is to control the
sparsity of the similarity matrix W (i.e., the number of dom-
inant correspondence pairs). When calculating W, we apply
the algorithm of soft-Iterative Closest Point [16] for normal-
izing each entry in W. This process would make every data
contribute identically and avoid possible adaptation of outlier
data in the source domain.



2.2.2. Learning the correspondence transform �

With the determination of the similarity matrix W, we now
discuss how we learn the correspondence between cross-
domain data in the transformed feature space with recognition
guarantees. Aiming at better determining the cross-domain
correspondences, we utilize the transformation A 2 Rm⇥k

derived by TCA [6] for projecting source and target data into
the transformed space.

Instead of relating cross-domain data in the original fea-
ture space, our work is to associate transformed cross-domain
data fs(x) = A

>
XS and ft(x) = A

>
XT by learning the

correspondence transform � 2 Rk⇥k. With the observed
the similarity matrix W, the introduction and learning of this
transformation would allow us to identify cross-domain data
pairs, while the class labels will be transferred from source to
target domain for classification purposes.

To solve the above problem, we propose to solve the fol-
lowing optimization problem:

min
�

NsX

i=1

NtX

j=1

wij k A

>
xsi ��A

>
xtj k2F . (4)

As noted above (and in Algorithm 1), since we apply the
transformation of TCA for initializing A, we do not need to
apply additional constraints on A for avoiding trivial solution.

We see that (4) can be viewed as a robust scheme for
determining distances between each cross-domain data pair.
In other words, our proposed algorithm uniquely applies
the concepts of instance reweighting for performing feature
matching. Since we transfer the pseudo labels from source
to target domains during adaptation, the resulting correspon-
dence transformation would exhibit recognition capabilities.
Later in our experiments, we will show that our proposed
method would perform favorably against state-of-the-art un-
supervised domain adaptation approaches.

2.3. Optimization

To jointly optimize W and �, we first rewrite (4) as follows:

min
�

tr(�(
NsX

i=1

NtX

j=1

wij ztjztj
>)�>

� 2(
NsX

i=1

NtX

j=1

wij zsiztj
>))�> +R,

(5)

where zsi = A

>
xsi and ztj = A

>
xtj . R denotes the term

unrelated to �. For the sake of simplicity, we define

⌃̃st =
NsX

i=1

NtX

j=1

wij zsiz
>
tj and ⌃̃tt =

NsX

i=1

NtX

j=1

wij ztjz
>
tj ,

and thus � can be derived by taking the partial derivatives:

� = (⌃̃st)(⌃̃tt)
�1

. (6)

Algorithm 1 Direct Distribution Matching
Input: Xs, Xt, ys, dimension k, parameter �.
Initialization: Projection matrix A derived by TCA, � = I

while Not Converge do
Determine pseudo labels ỹt by source classifiers.
Update W by (3) and � by solving (4)

end while
Classify transformed test data by nearest neighbor classifier

Output: Classified label yt

Based on the above derivations, we update the pseudo labels
ỹt, the similarity matrix W and the correspondence transform
� iteratively for solving (4). Once both W and � are ob-
tained, recognition can be simply achieved by projecting test
data XT into the transformed space, followed by determin-
ing its correspondence/similarity to source-domain data. Our
algorithm is summarized in Algorithm 1.

3. EXPERIMENTS

3.1. Cross-View Object Recognition

For solving this task, we consider the COIL-20 dataset [17]
which consists of 20 objects with 1,440 images. Each object
category contains 72 images which are taken on a turntable
for 5 degrees apart. Each image is of size 32 ⇥ 32 with gray-
scale pixels. Since the images are with plain background, we
directly describe each image by a 1024 dimension vector. Fol-
lowing the setting of [7], the dataset are partitioned into two
subsets, COIL1 and COIL2. COIL1 contains all images with
objects rotated by [0�, 85�] [ [180�, 265�] and COIL2 con-
tains objects rotated by [90�, 175�] [ [270�, 355�], so each
subset has 720 images of 20 classes. As a results we have
two cross-view pairs to be considered (i.e., COIL1) COIL2
and COIL2) COIL1). Obviously, images at different views
would exhibit significant variations and thus make the recog-
nition problem difficult.

For comparisons, several state-of-the-art unsupervised
domain adaptation methods including TCA [6], JDA [7],
TJM [14] are considered. We also perform direct classi-
fication (i.e., no domain adaptation) using source-domain
classifiers (we use nearest neighbors (NN)). In our wok, we
let � = 0.1 and dimension k = 30 for all methods, and fix
� = 8. The results are listed in the first two rows in Ta-
ble 1, which show that our method clearly achieved improved
cross-view recognition performance than other approaches.

3.2. Cross Domain Handwritten Digit Recognition

Next, we use USPS and MNIST datasets for evaluating our
performance on cross-domain handwritten digit recognition.
The former contains 7,291 training images and 2007 test im-
ages of size 16⇥16 pixels (of 10 categories), while the latter
consists of 60,000 and 10,000 images of size 28⇥28 pixels
for training and testing, respectively. Again, we follow the



Table 1. Performance comparisons for cross-domain visual classi-
fication. Note that we have S ) T indicate adaptation of data from
source S to target domains T .

Methods NN TCA [6] JDA [7] TJM [14] Ours
COIL1 ) COIL2 83.61 88.47 93.75 89.86 98.80
COIL2 ) COIL1 82.78 86.11 91.67 87.92 96.70
USPS ) MNIST 44.70 53.05 60.00 51.35 61.70
MNIST ) USPS 65.94 58.78 72.11 61.11 63.00

setting of [7], and randomly sample 1800 and 2000 images
from USPS and MNIST respectively. Each image is repre-
sented by a 256 (e.g., 16 ⇥ 16) dimensional vector (in terms
of their grayscale pixel values).

By utilizing the same recent/baseline unsupervised do-
main adaptation approaches (and settings) for comparisons,
we list the recognition results in the bottom two rows of Ta-
ble 1. From this table, we see that our approach achieved
comparable or improved results over state-of-the-art methods.

3.3. Cross-Domain Object Recognition

Finally, we address the challenging task of cross-domain
object recognition using Office [11] and Caltech-256 [18]
datasets. The Office dataset consists of image from 31 object
classes, which are collected from three different domains:
Amazon, DSLR, and Webcam. The images of Amazon are
collected from the Internet, those of DSLR are taken with
high resolution cameras, while the webcam images are typ-
ically taken with low-resolution, over-exposed or blurred
sensors. The Caltech-256 dataset contains object images of
256 categories. As did in [5], we combine the above datasets
and select the 10 shared categories to construct image data
in four different domains: Amazon (A), DSLR (D), Web-
cam (W), and Caltech (C). As a result, a total of 12 different
cross-domain pairs will be available for evaluation. Detailed
settings such as the number of training images per category
can be found in [5].

To describe each object image, we advance the DeCAF6

features [19] to extract a 4,096-dimensional feature vector. As
shown in [19], the DeCAF feature is able to achieve remark-
able performance in generic image classification tasks. As
for the parameters, we set � = 0.1, dimension k = 30 (via
PCA), and � = 4. The recognition performance and com-
parisons are presented in Table 2. As shown in this table, our
proposed method performed favorably against state-of-the-art
methods. Based on the above experiments, the effectiveness
of our unsupervised domain adaptation approach for cross-
domain visual classification can be successfully verified.

3.4. Remarks on Convergence

Lastly, we discuss the issue of convergence as mentioned in
Section 2.3. Figure 2 shows the classification rates on two se-
lected cross-domain pairs with increasing iteration numbers.

Table 2. Recognition results of cross-domain object recognition.
Methods NN TCA [6] JDA [7] TJM [14] Ours
A ) W 71.19 76.61 84.07 77.97 83.05
A ) D 80.89 81.53 84.71 84.71 84.08
A ) C 82.19 82.72 84.42 81.48 87.36
W ) A 77.35 79.44 89.98 86.12 92.07
W ) D 100.00 100.00 100.00 100.00 100.00
W ) C 73.46 74.44 81.66 78.81 85.40
D ) A 84.55 85.91 92.17 88.62 91.75
D ) W 98.98 99.32 100.00 98.64 100.00
D ) C 77.92 76.76 84.06 80.32 85.84
C ) A 90.19 89.98 90.40 90.92 93.01
C ) W 78.31 81.02 86.10 82.71 95.93
C ) D 87.90 87.26 88.54 88.54 91.72
Average 83.58 84.58 88.84 86.57 90.85
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Fig. 2. Convergence analysis (i.e., accuracy vs. iteration number)
for (a) cross-view object recognition and cross-domain handwritten
digit recognition, and (b) cross-domain object recognition. Note that
only one cross-domain pair for each is shown due to space limitation.

It can be seen that our proposed method achieved improved
and converging performances within 5-10 iterations. This ob-
servation also applies to other cross-domain pairs in our ex-
periments. Therefore, we successfully verify the convergence
of the proposed method.

4. CONCLUSION

We proposed a novel unsupervised domain adaptation ap-
proach which jointly exploits the correspondence between
cross-domain data and recovers the label information in the
target domain. Inspired by instance reweighting and feature
matching techniques for domain adaptation, our method is
able to match cross-domain feature distributions at the in-
stance level, while the contribution of each cross-domain pair
can be properly and automatically identified. In our experi-
ments, we successfully achieved improved results on the tasks
of cross-view object recognition, cross-domain handwritten
digit recognition, and cross-domain object recognition.
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