
Neural Networks 21 (2008) 502–510

www.elsevier.com/locate/neunet

2008 Special Issue

New support vector-based design method for binary hierarchical classifiers
for multi-class classification problems�

Yu-Chiang Frank Wang∗, David Casasent

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Received 3 August 2007; received in revised form 9 November 2007; accepted 3 December 2007

Abstract

We propose a new hierarchical design method, weighted support vector (WSV) k-means clustering, to design a binary hierarchical classification

structure. This method automatically selects the classes to be separated at each node in the hierarchy, and allows visualization of clusters of high-

dimensional support vector data; no prior hierarchical designs address this. At each node in the hierarchy, we use an SVRDM (support vector

representation and discrimination machine) classifier, which offers generalization and good rejection of unseen false objects (rejection is not

achieved with the standard SVMs). We give the basis and new insight into why a Gaussian kernel provides good rejection. Recognition and

rejection test results on a real IR (infrared) database show that our proposed method outperforms the standard one-vs-rest methods and the use of

standard SVM classifiers.

c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Automatic target recognition; Hierarchical classifier; Pattern recognition; Support vector machine

1. Introduction

When the number of classes in a multi-class problem in-

creases, computational complexity increases and performance

can decrease. Non-parametric classifiers (e.g. kNN) are not at-

tractive because of their computational complexity (Fukunaga,

1990). Since it is easier to construct a classifier for two

true classes than one classifier to handle C different classes

(Kumar, Ghosh, & Crawford, 2002; Platt, Cristianini, & Shawe-

Taylor, 1999), a preferable method for the multi-class classifi-

cation problem is to use several binary classifiers and to com-

bine their results. Therefore, we consider a hierarchical clas-

sifier (see Fig. 1); at the top node, we decompose the C-class

problem into two binary two-class (or macro-class) problems (a
macro-class is a collection of several classes) in the hierarchy.

At each node in the hierarchy, the input is classified into one

of two macro-classes. The design of the hierarchy refers to se-

lecting the macro-classes to be separated at each node. Among

� An abbreviated version of some portions of this article appeared in Wang
and Casasent (2007) as part of the IJCNN 2007 Conference Proceedings,
published under IEE copyright.

∗ Corresponding author. Tel.: +1 412 268 4495.
E-mail address: ycwang@cmu.edu (Y.-C.F. Wang).

the binary classifiers, the support vector machine (SVM) is an

attractive classifier that provides generalization (Cortes & Vap-

nik, 1995). In this paper, we consider a hierarchy of SVM-type

classifiers (one at each node in Fig. 1). Our work also concerns

rejection of unseen false objects. To achieve this, we use our

new SVRDM (support vector representation and discrimination

machine (Section 3)) classifier in the hierarchy. It provides an

improved rejection ability, which the standard SVM classifier

does not (Tax & Duin, 1999).

There are two standard approaches to construct and combine

the results from different classifiers for a C-class problem. The

first is the one-vs-rest method (Duda, Hart, & Stork, 2000), in

which each classifier distinguishes one class from the other C-1

classes, and the class label of the input is decided by winner-

take-all, etc., methods (Anand, Mehrotra, Mohan, & Ranka,

1995). Each classifier needs to be trained on the whole training

set, and there is no guarantee that good discrimination exists

between one class and the remaining classes. This method also

results in imbalanced data learning problems, where the number

of training set samples in the two classes is very different.

Therefore, we may not expect good classification using this

method. The second standard approach to combine different

classifiers is the one-vs-one method (Hastie & Tibshirani,

1998), in which the decision is made by majority voting, etc.,

0893-6080/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2007.12.005

Y.-C.F. Wang, D. Casasent / Neural Networks 21 (2008) 502–510 503

Fig. 1. Structure of a binary hierarchical classification structure.

strategies. This requires training and testing of C(C − 1)/2 ≈
C2/2 different classifiers. This approach is prohibitive when C
is large (Kumar et al., 2002).

Thus, we chose a binary hierarchical classification structure

in Fig. 1 (Casasent & Wang, 2005; Wang & Casasent, 2006)

using new SVRDM classifiers (Yuan & Casasent, 2003) for the

multi-class problem. In Fig. 1, each node is a binary classifier.

Coarse separation between classes occurs in the beginning (at

upper levels) in the hierarchy and a finer classification decision

later (at lower levels). At the top node, we divide the original

C classes into two smaller groups of classes (macro-classes);

this clustering procedure is repeated in subsequent levels, until

there is only one class in the final sub-group. The macro-classes

are different at each node in the hierarchy and the numbers

of classes in each macro-class at a node are not necessarily

the same. This hierarchical structure decomposes the problem

into C-1 binary sub-problems. For testing, only about log2 C
classifiers are required to traverse a path from top to bottom.

Thus, the number of required calculations is reduced in this

approach.

We originally (Casasent & Wang, 2005) considered a

balanced binary hierarchical structure, in which the two macro-

classes at each node had approximately the same number

of classes. We now propose a new clustering algorithm

(Section 2.2), which designs the hierarchical structure (the

macro-classes at each node) in the same high dimensional

space, in which the SVRDMs are used. This method does not

require a balanced structure.

In many pattern recognition applications, it is also necessary

to provide good rejection of false classes that have never been

seen in training, e.g. imposters in face recognition; this issue

should be considered in the design of the classifier. Surprisingly,

the classification–rejection problem has not been addressed in

most prior work. The standard SVM has poor rejection. Our

SVRDM classifier is designed to give good classification (of

true classes) and rejection (of false classes not seen in training).

This paper contains much data and information not present

in our IJCNN’07 Proceedings paper (Wang & Casasent, 2007).

There is a complete discussion in Section 2 on how we analyze

the data in higher dimensional space, and how we use this

information to propose the new hierarchical design method.

This is much longer than the text in our IJCNN’07 paper.

Section 3 details the SVRDM classifier and provides new

insight into reasons for its good rejection. The discussion on

time complexity in Section 4 is not in the IJCNN’07 paper.

Sections 5 and 6 describe the database and feature space used.

New Section 7 ROC data is not present in the IJCNN’07 paper.

2. Binary hierarchical classification structure and its design
methods

The hierarchical clustering (i.e. the macro-class selection)

at each node in the hierarchy should not be done arbitrarily

or by intuition. There are two different design approaches:

agglomerative (bottom-up) and divisive (top-down) clustering

(Duda et al., 2000). Since there is no guarantee that a good

separation exists at each node in bottom-up design, we consider

a top-down design for our hierarchical classifier. We discuss

other prior design methods in Section 2.1 and introduce our new

method in Section 2.2.

2.1. Prior methods

The spherical shell method (Vural & Dy, 2004) compares

the class means to the total mean. Since it only uses a simple

mean vector per class, it does not describe the data well when

the distribution is complex.

Others (Platt et al., 1999) proposed a Directed Acyclic Graph

to combine the results of different one-vs-one SVM classifiers

in a hierarchical way. However, classification errors seem to

occur, because each classifier is only trained to distinguish

between two classes and inputs will be from all true classes.

This method also needs ∼C2/2 classifiers.

To design a binary hierarchy, one could perform an

exhaustive search for the macro-class pair with the largest

margin at each node. However, for a node with M classes,

there are 2M/2 − 1 ≈ 2M−1 macro-class pair combinations

to consider, which can become prohibitive when M is large. To

avoid an exhaustive search of all macro-class choices at each

node, we proposed a balanced binary hierarchical structure
method (Casasent & Wang, 2005), in which the number of

classes in each macro-class at each node was the same or

different by only one. For a node with eight classes, there are

only 0.5 × C8
4 = 35 possible macro-class pair combinations,

instead of 28/2 − 1 = 127. In the hierarchical design, we still

need to evaluate all possible choices of balanced macro-class

pairs at each node. Obviously, requiring an equal number of

classes in each macro-class at a node may not be optimal.

Standard k-means clustering has been applied to design a

binary hierarchical structure (Vural & Dy, 2004). To divide a set

of classes into two groups (k = 2) at each node, they used the

class mean μi to represent each class i and applied standard k-

means clustering to divide these mean vectors into two groups,

such that the total distance between the means μi (of all classes

in cluster C j) to its cluster centroid m j is minimized. The

squared error to be minimized was

J =
2∑

j=1

∑
μi ∈C j

∥∥μi − m j
∥∥2

. (1)

The use of class mean is not good when the data distribution

is complex (as we noted earlier). To address this, we proposed

504 Y.-C.F. Wang, D. Casasent / Neural Networks 21 (2008) 502–510

(Wang & Casasent, 2006) use of one representative vector for

each class (a combination of its support vectors) in place of μi
in (1). This design method is fast, and the unbalanced design it

produces is expected to perform better than a balanced design.

However, we calculated the representative vector as a linear

combination of the support vectors in the original data space

and the macro-class choices were made in the original space.

In this paper (Section 2.2), our new algorithm uses the higher-

order classification space to select the macro-classes.

In our hierarchical classifier, the feature space used is the

same for all classifiers in the hierarchy. In Shaik and Yeasin

(2006), subspace methods are used to select different features

to use at different levels in a binary hierarchical structure (for

microarray gene data separation of tumor and normal samples).

This is very different from our proposed binary hierarchical

“classification” structure.

2.2. Our proposed method

We now address our new hierarchical design method (i.e.

selection of the classes to be separated at each node in the

hierarchical tree). Since we apply SVM-type classifiers at

each node in the hierarchy, it is preferable to design the

hierarchy in the same high dimensional transformed feature

space. Therefore, μi and m j in (1) must be in higher-order

transformed space. We propose a new WSV (Weighted Support
Vector) K-means Clustering method that separates a set of

classes into two groups in high-dimension space using all

support vector information for each class.

There are two major concerns in our method. First, we

need to find a new vector (for each class) in higher-order

transformed space to use for μi ; this vector will be the best

representative of class i in this space. The second concern is

how to implement the k-means clustering algorithm in (1) in

that space? To address the first problem, we use the SVRM

(support vector representation machine (Yuan & Casasent,

2003)) solution vector, which determines one discriminant

function that represents one class well. To implement (1) in

higher-order space, we expand (1) as

J =
2∑

j=1

∑
x∈C j

∥∥μi − m j
∥∥2

=
2∑

j=1

∑
x∈C j

(∥∥μi

∥∥2 + ∥∥m j
∥∥2 + 2μT

i m j

)
. (2)

In (2), we note that each term is a vector inner product (VIP).

Therefore, when implementing (2) in higher-order space, only

the VIP between different transformed data is required, and thus

a kernel function can be used to compute the result without

knowing the transform explicitly. Section 2.2.1 reviews the

SVRM and the use of kernels; our new clustering method and

the solution to (2) are presented in Section 2.2.2.

2.2.1. Support vector representation machine (SVRM)
We review the SVRM, as it is used to select the

representatives for each class. The SVRM is a modified one-

class SVM that solves the data domain description problem

(Tax & Duin, 1999). It recognizes one class (of interest) in a

high dimensional transformed feature space with a Gaussian

kernel. Its solution vector h satisfies

Min ‖h‖2 /2, s.t. f (xi) = hTΦ(xi) ≥ 1, i = 1, . . . , N , (3)

where N is the number of training samples in the class of

interest and Φ(x) is the training data projected onto a higher

dimension space. Applying Lagrange multipliers and Quadratic

Programming techniques, the solution vector h = ∑
αiΦ (xi),

i = 1 to N , where αi ≥ 0 are the Lagrange multipliers, and

Φ(xi) are the transformed training set data. The data with non-

zero αi are the support vectors of this class; the SVRM solution
vector h is a linear combination of the support vectors of the
class of interest. As in SVM-type classifiers, h is not solved

explicitly and only the αi are known. Although the nonlinear

transform Φ and the explicit form of Φ(x) are generally not

available, with the use of a kernel function K (x, y) (Cortes &

Vapnik, 1995), one can easily compute the evaluation function
f (x) = hTΦ(x) in (3) for a test input x from the inner products

of different Φ(xi), i.e. K (x, xi) = Φ(x)TΦ(xi), as we now

show. Using the solution h in (3), the evaluation function in

(3) becomes

f (x) = hTΦ(x) =
∑

αi

(
Φ (xi)

T Φ(x)
)

=
∑

αi K (xi , x) . (4)

From (4), we see that we only need to evaluate kernels K .

By minimizing ‖h‖ in the evaluation function f (x) =
hTΦ(x) in (3), we minimize the decision region for the class

of interest and thus achieve good rejection of inputs in other

classes, which have never been seen. In testing, if f (x) ≥
T , we accept the input x as a member of the true class; if

f (x) < T , we reject the input as a false class. The threshold

T is varied to obtain ROC (receiver operating characteristic)

data. Throughout this paper, we assume that no false class
samples to be rejected are available during training. This

is realistic for many applications, since we cannot expect

data from all possible false classes. Others also make this

assumption (Chen, Zhou, & Huang, 2001). In the SVRM and

our SVRDM (Section 3), we use a Gaussian kernel function

exp(−‖xi − x‖2/2σ 2). It is easy to evaluate the kernel function

for an input x and a training sample xi . Thus, we can evaluate

the vector inner product in the evaluation function hTΦ(x)

in (4). We have shown (Wang & Casasent, 2006; Yuan &

Casasent, 2005) that this Gaussian kernel function choice is

best when rejection is of concern; our new method (Yuan &

Casasent, 2003) for selecting σ also makes this SVRM quite

unique.

2.2.2. New WSV K-means clustering algorithm for binary
hierarchical design

Our new method for binary hierarchical design is WSV

(weighted support vector) K-means Clustering. This uses the

SVRM solution vector h for each class as the best representative

for that class in the high dimensional transformed space

(Section 2.2.1). For a set of M classes at one node, we divide

them into the best two clusters or macro-classes (C1 and

Y.-C.F. Wang, D. Casasent / Neural Networks 21 (2008) 502–510 505

C2) using our new k-means clustering (k = 2) algorithm in

higher-order space. Although the explicit form of Φ(x) and the

solution vector h in high dimensional space are generally not

available, use of kernel functions computes the VIPs between

the transformed data, and allows use of the L2-norm to calculate

the distance between different samples in high dimensional

space. This is very new.

We now detail how to implement this method. We first

replace μi in (1) with the SVRM solution hi for class i . The

centroid m1 of cluster (macro-class) C1 in (1) is now Φ(m1) in

high dimensional space; it is the mean vector of the h j for the

classes in that cluster (macro-class), and it is iteratively updated

during the clustering process. Therefore,

Φ (m1) = 1

NC1

NC1∑
j=1, j∈C1

h j

= 1

NC1

NC1∑
j=1, j∈C1

(∑
i

αi jΦ
(
xi j
))

, (5)

where NC1 is the number of classes grouped into cluster C1.

The form for Φ(m2) for cluster C2 (second macro-class) is

similar, and NC1 + NC2 = M (the total number of classes to be

separated). The hi is a linear combination of the support vectors

of class i . Since the form for hi and for the nonlinear transform

Φ are not known, we rewrite the distance from the vector hi
for each class i to the means Φ(m1) and Φ(m2) for the two

clusters in terms of inner products Φ(xi)
TΦ(x j). For example,

the distance between the SVRM solution vector hi for class i
and the mean Φ(m1) for cluster C1 is

‖hi − Φ (m1)‖2 =
∥∥∥∥∥∥
∑

n
αinΦ (xin)

− 1

NC1

NC1∑
j=1, j∈C1

(∑
n

α jnΦ
(
x jn
))∥∥∥∥∥∥

2

=
∥∥∥∥∥
∑

n
αinΦ (xin)

∥∥∥∥∥
2

+
∥∥∥∥∥∥

1

NC1

NC1∑
j=1, j∈C1

(∑
n

α jnΦ
(
x jn
))∥∥∥∥∥∥

2

− 2

NC1

(∑
n

αinΦ (xin)

)

×
⎛
⎝ NC1∑

j=1, j∈C1

(∑
n

α jnΦ
(
x jn
))⎞⎠ . (6)

This is like (2) for one cluster and one class i in higher-

order transformed space. As seen, all terms are inner product

terms, easily evaluated by kernel methods, Φ(xi)
TΦ(x j) =

K (xi , x j) = exp(−‖xi − x j‖2/2σ 2); thus, (6) is easy to

compute. Note that all summations in (6) are only over support

vectors. In each iteration of our WSV k-means clustering

process, we compare d1 = ‖hi − Φ(m1)‖ and d2 = ‖hi −
Φ(m2)‖ for all of the hi for all classes present; if d1 < d2

for a specific hi , that hi is assigned to cluster C1 (i.e. class i
is placed in macro-class 1) and vice versa. After all solution

vectors hi are grouped into one of the two clusters C1 and

C2, new cluster means Φ(m1) and Φ(m2) are updated, and the

clustering process is repeated until the total distance between

each hi and its cluster mean is minimized (as in the standard

k-means clustering algorithm). This method is a major new
method in visualizing and clustering high-dimensional support
vector data.

Thus, for a node with M classes to be separated, we first

obtain M SVRM solution vectors hi for the M classes in

transformed space. Next, we apply our new k-means clustering

algorithm (k = 2) to these M vectors (recall that each hi is a

weighted sum of all support vectors for class i), and we iterate

to divide these M vectors into two sets. Therefore, two clusters

(macro-classes) are determined at each node, for which (1) in

high dimensional space is optimized for both clusters. Note

that the distances in (6) are calculated using a weighted sum of

support vectors; we thus refer to this new algorithm as weighted
support vector k-means clustering. Since no validation set data

is needed in this method (our earlier (Casasent & Wang, 2005)

balanced binary design method needs validation set data), this

design is also much faster. Once the macro-class pair for each

node in the hierarchy has been selected, the design of the binary

hierarchical classifier is complete. We then form an SVRDM

classifier (Section 3) for the macro-class pair chosen at each

node using training set samples, and we use them as the binary

classifiers at each node in the hierarchy.

3. Support vector representation and discrimination ma-
chine (SVRDM)

3.1. SVRDM algorithm

The SVRDM is a version of the SVM that provides good

discrimination between the true classes (as the SVM does) and

better rejection for false classes (Yuan & Casasent, 2003) (than

the SVM can). In the SVM, to classify an input x into one

of two classes, we compute the VIP (vector inner product)

evaluation function output of the transformed test input Φ(x)

and the nonlinear filter function h as f (x) = hTΦ(x). In the

standard SVM, h is computed from the training set and solves

the following quadratic programming problem

Min ‖h‖2 /2, s.t.

{
hTΦ(xi) ≥ +1, i = 1, 2, . . . , N 1

hTΦ(x j) ≤ −1, j = 1, 2, . . . , N 2,
(7)

where N1 and N2 are the number of training set samples in

each class. For our hierarchical classifier, the two classes to

be separated at each node are the associated pair of macro-

classes. Since the standard SVM cannot reject false class

inputs well (Tax & Duin, 1999), we extend the SVM to

our new SVRDM to achieve better rejection performance. In

our hierarchical SVRDM classification structure, each node

handles classification of two classes (macro-classes). The two

506 Y.-C.F. Wang, D. Casasent / Neural Networks 21 (2008) 502–510

solution vectors h1 and h2 for classes (macro-classes) 1 and 2

at a given node are chosen to satisfy

Min ‖h1‖2 /2

hT
1Φ(x1i) ≥ T, i = 1, 2, . . . , N 1

hT
1Φ(x2 j) ≤ p, j = 1, 2, . . . , N 2,

Min ‖h2‖2 /2

hT
2Φ(x2 j) ≥ T, j = 1, 2, . . . , N 2

hT
2Φ(x1i) ≤ p, i = 1, 2, . . . , N 1 .

(8)

In (8), there are N1 and N2 samples in each class (macro-

class). We note that the second class output is specified to be

≤p (and not −T or −1, as in the standard SVM). If p =
−1, then (8) describes the standard SVM. We use p
= −1;

this improves rejection (as we have shown Yuan and Casasent

(2003)). Typically, we choose p in the range [−1, 0.6]. We use

T = 1 in training and vary it in testing. In the presence of

outliers (training class errors), slack variables ξ are used in both

h1 and h2. Thus, the final h1 in (8) satisfies

Min
{
‖h1‖2 /2 + C

(∑
ξ1i +

∑
ξ2 j

)}
,

ξ1i ≥ 0, ξ2 j ≥ 0

hT
1Φ(x1i) ≥ T − ξ1i , i = 1, 2, . . . , N 1

hT
1Φ(x2 j) ≤ p + ξ2 j , j = 1, 2, . . . , N 2 .

(9)

In (9), C is the weight of the penalty term for the slack variables,

which is the tradeoff between the amount of errors and the

separation between the two classes (Cortes & Vapnik, 1995).

We use C = 20. The final version of h2 is similar.

At each node in the hierarchical design, we evaluate the

associated two VIPs of the transformed input Φ(x) and the

h1 and h2 (at that node). The VIP with the largest output (≥
threshold T) denotes the macro-class decision made at that

node. If neither VIP gives an output ≥T , the test input is

rejected as a false class. As in an SVM, only the VIP of the

transformed test input Φ(x) and the nonlinear filter function h is

needed; the explicit form of the transformed Φ is not necessary

(see Section 2.2.1). We use the Gaussian kernel function for

reasons discussed in Section 3.2.

3.2. Basis for SVRDM good rejection & SVRDM parameter
choices

In SVM-type classifiers, hTΦ(x) is evaluated using kernel

functions K (xi , x), where the xi are the support vectors and

x is the test input. Several possible kernel choices exist,

such as linear, polynomial, Gaussian, etc. However, to address

both classification and rejection problems, we want the kernel

function to give large output values for true class inputs and low

values for false classes (to be rejected). The Gaussian kernel

K (xi , x) = exp(−‖xi − x‖2/2σ 2) approaches zero as ‖xi − x‖
increases, i.e. when the test input x is far from the support

vector xi . This is likely to be the case for false class inputs;

their evaluation function output will thus be below the threshold

T and they will be rejected. If a polynomial kernel function

K (xi , x) = (xTxi + 1)d is used, the VIP xTxi can be very

large when x is far from xi and lies in the same direction as xi .

Fig. 2. Conceptual SVRDM (h1) and SVM (hSVM) solutions.

Therefore, for a polynomial kernel, the evaluation function

output may still be large (>T) for false class inputs, and thus

this kernel is not good when rejection is of concern. Similar

remarks can also be used to show that linear, sigmoid, etc.,

kernels are not good for rejection.

Next, by illustration, we show why our SVRDM with a

Gaussian kernel is better than a standard SVM at rejection.

For the Gaussian kernel, all data lie on the unit sphere in

transformed space. Fig. 2 conceptually shows the solution

vectors h1 and h2 (for the SVRDM) and hSVM (for the SVM)

in the transformed space. For simplicity, training data points

in Fig. 2 (filled in and open circles) denote the extremes of

the training set and the average training set vector for each

class. The SVM solution vector hSVM is normal to the decision

boundary, which is a vertical line through the center of the

circle. For our SVRDM with p = 0.6, the vector h1 shown

satisfies (8). The h2 solution vector for class 2 is similar to h1

but it lies in the first quadrant, symmetric about the vertical

for this example. The lengths of the three vector solutions

shown are proportional to their norms (energy). We note that the

length, or equivalently, the energy of hSVM is larger than that of

h1 and h2. This is expected, because a larger p > −1 is used

in (8) and (9) for the SVRDM (this is a looser constraint in the
quadratic programming problem, and thus a better minimum
point can be found). The decision region of acceptance of true

class data is proportional to the energy of the solution vector.

Thus, the SVM has a larger acceptance region and hence poorer

rejection than the SVRDM due to the lower p value (looser

constraint) in the SVRDM. In Fig. 2, the range of transformed

inputs that will be accepted as class 1 for the SVRDM is

described by the arc z′
3–z3. This range is much less than the z′′

3 to

z3 range for the SVM. Thus, we expect a lower false alarm rate

PFA and hence better rejection for our SVRDM (with p = 0.6)

vs. the SVM (with p = −1). If Fig. 2 were a hyper-sphere, the

bounding boundary (within which Φ(x) satisfies hTΦ(x) ≥ 1)

for the SVM would be a hyper-circle on the surface of the

hyper-sphere as shown in 2-D in Fig. 2.

To train an SVRDM, we must choose values for several

parameters. If σ in the Gaussian kernel function is chosen

too small, the decision region for the class samples will be

too tight, which is analogous to overfitting and results in poor

generalization. As σ decreases, more training samples become

support vectors. We developed a new automated method to

select σ (Yuan & Casasent, 2005). Our σ selection method and

Y.-C.F. Wang, D. Casasent / Neural Networks 21 (2008) 502–510 507

Fig. 3. The M60 tank at (counterclockwise) 0◦, 45◦, 90◦, 270◦, 315◦, and 180◦ aspect views (starting from the upper left image).

our use of p > −1 are the two major differences in our SVRDM
and the standard SVM. Note that larger T in testing (and a larger

p in training) give smaller decision regions and thus better PFA.

In this paper, we use p = 0.6 and C = 20 (which is not critical).

We varied T to achieve different operating points in our results

in Section 6.

4. Time complexity comparison

We now show that a binary hierarchical classification

structure such as ours using SVM type classifiers is more

efficient than the standard one-vs-rest and one-vs-one methods

by comparing the required training and testing times.

4.1. Training

Empirically, the training time for an SVM has been observed

(Platt, 1999) to be T ∝ N γ

T , where NT is the total training set

size and γ is typically assumed to be 2. For a C-class problem

with total training set size NT , we assume that each class has the

same number of training samples NT /C . To train C different

one-vs-rest SVM classifiers require C N 2
T . For the one-vs-one

method, we need to train C(C−1)/2 different SVMs, each with

a training set size 2NT /C . Therefore, the training time required

is (C(C−1)/2)(2NT /C)2 ≈ 2N 2
T . With the same assumptions,

for a balanced binary hierarchical structure of SVMs, we need

to train the SVM at the top node with the full training set size

NT , the two SVMs at the second level each has a training

set size of NT /2, the four SVMs at the third level each has a

training set size of NT /4, etc.; at the last (log2 C) level, there

are C/2 different SVMs. Therefore, the training time required

is (N 2
T + 2(NT /2)2 + 4(NT /4)2 + · · ·) ≈ 2N 2

T . Note that the

time to train a binary hierarchical structure with a total of C −1

SVMs is the same as that of the one-vs-one method.

4.2. Testing

We now compare the time complexity for testing each

method. From (4), we need to evaluate hTΦ(x) for each SVM.

With a Gaussian kernel, hTΦ(x) is

NS∑
i

Φ (xi)
T Φ (x) =

NS∑
i

exp
(
− ‖xi − x‖2 /2σ 2

)
, (10)

where NS is the number of support vectors. Therefore, instead

of performing each inner product Φ(xi)
TΦ(x), we only need to

evaluate each of the Gaussian kernel functions. For simplicity,

we assume that a fraction α (0 < α < 1) of the training

set data are support vectors, i.e. NS = αNT . In the one-

vs-rest method, the number of computations we need for an

SVM is approximately αNT ; therefore, the total number of

computations to classify a test input is approximately αC NT .

For the one-vs-one method, we require about αxC(C −
1)/2x(2NT /C) ≈ αC NT calculations to obtain the outputs

from all C(C −1)/2 SVMs. For the binary hierarchical method,

the test time required is α(NT + NT /2+ NT /4+· · ·) ≈ 2αNT ,

which is less than the standard methods by a large factor of C/2

(recall that C is large). Therefore, we conclude that the binary

hierarchical classification structure is superior to other standard

multi-class SVM algorithms in terms of training and testing

time. For the SVRDM, an extra factor of 2 is necessary because

two evaluation functions must be evaluated. In Section 6, we

compare the performance and the time complexity of these

three classification approaches.

5. Database description (Comanche)

The Comanche database is a real infrared (IR) database. The

eight object classes are: 2S1, BMP, HMMWV, M1, M113, M3,

M60 and M730 (referred to as classes 1–8). The images used

are at a 2 km range with 72 aspect views of each object in 2

thermal states available. Each target chip is 151 × 51 pixels;

Fig. 3 shows the M60 tank images at six different aspect views.

Fig. 4(a) and (b) show the eight targets (classes 1 and 2 are

in the top row, etc.) in the two different thermal states (classes

4 and 7 are tanks; classes 1, 4, 6 and 7 are tank-like; class 5 is

an APC, etc.) The backgrounds are also different. The objects

in the Comanche database are bimodal and have low resolution

(since only detection, not classification, was considered in the
Comanche program). For each thermal state, we use 16 aspect

views in training and 56 in testing; thus, the test set data differs

from training set data by up to 25◦ in aspect. There are thus

16×2 = 32 training samples and 56×2 = 112 test images per

target class.

To evaluate the rejection ability of our SVRDMs, we

consider rejecting 21 different aspect views of the M2 (tank),

M35 (truck), and M163 (APC) targets, each with four different

thermal states, from a synthetic IR (TRIM-2) database. The

TRIM-2 database has twelve classes (eight vehicles and four

aircraft).The three TRIM-2 targets to be rejected are not present

in the Comanche database; there are thus 3 × 4 × 21 = 252

false objects to be rejected. Note that none of these false object
images are used in the training set; this is realistic and makes
the rejection problem very difficult.

508 Y.-C.F. Wang, D. Casasent / Neural Networks 21 (2008) 502–510

Fig. 4. (a) The first and (b) the second thermal states of broadside images of the eight classes to be recognized in the Comanche database.

6. Feature selection

We use magnitude Fourier Transform (|FT|) features in

training and testing, because they are shift-invariant (the

features remain the same even if the target is shifted in the

region of interest). This property is especially needed in ATR

tracking and classification applications, since the center of the

target in the scene cannot be exactly determined. We have

confirmed (Casasent & Wang, 2005) that if we used pixel-
based features, then if the target is moved by only 2–3 pixels,

the SVRDM classifier (or any pixel-based classifier) will not

give high performance. Since standard wavelets are not shift-

invariant, they were not considered in our work. Since the

|FT| plane is symmetric, another advantage is that we need

only half of the |FT| features. We also ignore higher |FT|
components; this further reduces the number of features used.

For an m × n pixel target chip, we use the lower m/4 × n/2

(vertical × horizontal) = (m × n)/8|FT| components in the

first and the second quadrants as our feature space. This use

of 75 × 13 = 975 features saves a factor of 8 in computation

time. We remove the DC point in the |FT| plane (this is a form

of image normalization that is of use with targets with thermal

variations), since the DC value is very dominant (about 1 or 2

orders larger than other |FT| components). Image preprocessing

techniques to reduce background noise, which is not the major

concern of this paper, can also be used to improve performance.

For future training images, we will use target images in a

constant background (i.e. without noise), and test images will

be targets present in different types of real background; this

will indicate the generalization of our classifier in realistic

applications.

7. Experimental results

In prior work, we designed a binary hierarchical classifica-

tion structure, using our old balanced design method, to classify

eight vehicle classes and to reject four aircraft classes (all data

Fig. 5. Binary hierarchical classification structure (8 classes) designed by our

WSV k-means clustering algorithm for the Comanche database.

were in the synthetic IR TRIM-2 database) and obtained only

one mis-classification error. Using our new WSV k-means clus-

tering design, we obtained perfect classification PC = 100%

and false alarm PFA = 0% values. In the present paper, we con-

sider the real IR (Comanche) data; its thermal state variations

are much more severe than those in TRIM-2 data (in which each

target was approximately all hot or cold); thus this present prob-

lem is much more difficult. Fig. 5 shows the hierarchical struc-

ture produced by our new design. The numbers in each box de-

note the classes in each macro-class at a given node. For exam-

ple, at the top node, our new clustering algorithm separates the

original eight classes into two macro-classes; classes 1, 2, 5, 6,

and 7 are in macro-class 1, and classes 3, 4, and 8 are in macro-

class 2. We observe that the two tanks (classes 4 and 7) are not

in the same macro-classes in the hierarchy. Without an auto-

mated hierarchical design method, one would use intuition and

place all tanks in the same macro-class. Therefore, a practical
and automated hierarchy design method (like ours) is very im-
portant. If a balanced binary hierarchical design is used, classes

1, 3, 4, 7 and classes 2, 5, 6, 8 were the two macro-classes at the

top node; if the design method proposed in Wang and Casasent

(2006) is used (k-means based support vector clustering in the

Y.-C.F. Wang, D. Casasent / Neural Networks 21 (2008) 502–510 509

Fig. 6. ROC curves for different classification strategies.

Table 1

Comparisons of test results using different classification strategies: (a) our

hierarchical SVRDM classification structure, (b) the 1-vs-rest method with

SVRDMs, and (c) with SVM classifiers

SVRDM (p = 0.6) SVM (p = −1)

(a) Our method (%) (b) 1-vs-rest (%) (c) 1-vs-rest (%)

PC @PFA = 8.3% 96.4 91.7 87.9

PFA@PC 95% 0 26.7 66.7

EER (%) 3.6 8.3 11.2

original data space), classes 1, 2, 5, 6 and 3, 4, 7, 8 were the two

macro-classes at the top node. These hierarchical structures are

both different from the one using the new proposed method in

this paper.

Fig. 6 shows the ROC curves, PC vs. PFA, for three different

classification strategies: our hierarchical SVRDM classifier and

standard one-vs-rest classifiers (using SVRDMs and SVMs,

respectively). Each point on the ROC curve corresponds to

a given threshold T choice in the SVM/SVRDM evaluation

function. From Fig. 6, we see that our hierarchical SVRDM

classifier outperforms the two standard methods, since its ROC

curve is above and to the left of them, while the one-vs-rest

SVM performs worst.

Next, we compare their classification performances at the

same PFA = 8.3% point. From the first row in Table 1, we

see that our method successfully recognized 96.4% of the true

class inputs, the others achieved PC = 91.7% and 87.9%. To

compare the rejection ability of these classifiers, we consider

the PC = 95% point and compare PFA results. The second row

of Table 1 indicates that our hierarchical SVRDM classifier has

perfect PFA = 0% and gives the best rejection performance,

while the other classifiers give PFA of 26.7% and 66.7%. As

noted earlier, the standard SVM has poor rejection ability, and,

in general, we expect worse performance using the 1-vs-rest

method, because each classifier has a harder problem to solve

than in the hierarchical method. When the number of classes

is larger, we expect the differences between the hierarchical

and one-vs-rest SVRDM cases to be even larger. As shown

in the last row in Table 1, our hierarchical SVRDM classifier

Fig. 7. (a) The misclassified BMP (at 355◦) is recognized as an M3, (b) an M3

(at 355◦) looks similar to (a), (c) the misclassified M60 (at 45◦) is recognized

as an M1, (d) an M1 (at 30◦) looks similar to (c).

Table 2

Comparisons of time complexity for different classification strategies

SVRDM (p = 0.6) SVM (p = −1)

(a) Our

method

(b) 1-vs-rest (c) 1-vs-rest

Training 238N 2 1024N 2 512N 2

Testing

(α value)

30αN ≈ 13N
(∼0.45)

64αN ≈ 20N
(∼0.31)

64αN ≈ 24N
(∼0.37)

N is the training set size for one class, and α is the fraction of the training set

data used as support vectors.

has the lowest equal error rate (PC = PFA) EER = 3.6%, the

two standard methods only have EER = 8.3% and 11.2%. We

did not consider a hierarchical classifier using SVMs, since the

standard SVM has poor rejection, as indicated in Table 1.

Fig. 7 shows some mis-classification examples for our

hierarchical SVRDM classifier at PFA = 8.3%: the BMP at a

355◦ aspect view (Fig. 7(a)) was recognized as an M3 (Fig. 7(b)

shows an M3 at the same aspect view), the M60 tank at a

45◦ aspect view (Fig. 7(c)) was recognized as an M1 tank

(Fig. 7(d) shows an M1 tank at a 30◦ aspect view). It is not easy

to determine exactly why these errors occur; however, most

Comanche target images have poor resolution (since detection,

not classification, was considered in the original Comanche

program), and thus it is difficult to classify these target images

perfectly.

Table 2 lists the training times for all classifiers and the

testing times for classifying one input image. Here, α is the

fraction of the training set data considered as support vectors,

and N is the training set size for a single class (NT = 8N ,

see Section 4). As seen, to train C − 1 = 7 SVRDMs in our

hierarchical structure, the training time is 238N 2 or 24 min on

our hardware. To train the C = 8 SVRDMs using the one-vs-

rest method takes much more time: 1024N 2 > 238N 2 or 125

min. This training time is off-line and is not of major concern.

The testing time for our hierarchical SVRDM classifier depends

on the hierarchical structure designed and the class of the test

input; as shown in Fig. 5, we only need to use two SVRDMs

(the best case) to classify test inputs from class 8 (the shortest

path in Fig. 5) and the testing time for this class is 8αN (the

time for the SVRDM with 8 classes at the top node) + 3αN
(the time for the SVRDM with 3 classes at the second level)

= 11αN ; however, a path of 4 SVRDMs (worst cases) is needed

510 Y.-C.F. Wang, D. Casasent / Neural Networks 21 (2008) 502–510

to classify test inputs in classes 6 or 7, and thus their testing

time is 18αN (8αN + 5αN + 3αN + 2αN , from the top

node to the bottom). We note that the training time (238N 2

and 1024N 2) for SVRDM-based approaches, and the average

test time (30αN) for the hierarchical SVRDM classifier listed

in Table 2, include the extra factor of 2 noted in Section 4.2.

The test time for the 1-vs-rest SVRDM and SVM classifiers

requires 64αN (8 classifiers × 8αN support vectors) or about

0.2 s. All test times are small, but our hierarchical SVRDM

classifier requires the least. These computations were made in

Matlab on a P4 1.8 GHz PC with 768 MB RAM.

8. Conclusion and future work

A novel WSV K -means clustering method was proposed

to design the binary hierarchical structure. This performs the

design in transformed high dimensional space; this is very

new and important because, unlike prior work on hierarchical

design, our design method and our SVRDM binary classifiers

(applied at each node in the hierarchy) both operate in high

dimensional space. We also explained why a Gaussian kernel

gives the best rejection of any SVM. Our preliminary results

have shown excellent classification and rejection results on a

real eight-class IR database. Compared to the standard one-vs-

rest classifiers, our hierarchical classifier gives better PC and

PFA; this occurs since the classifiers in the hierarchy are simpler

than the one-vs-rest classifiers. Our classifier is also seen to

be more computationally efficient. In future work, we can test

our method on larger class problems (e.g. face, fingerprint,

handwritten character, etc., recognition), and in such cases we

expect larger performance differences between our method and

standard methods.

References

Anand, R., Mehrotra, K., Mohan, C. K., & Ranka, S. (1995). Efficient

classification for multiclass problems using modular neural networks. IEEE
Transactions on Neural Networks, 6, 117–124.

Casasent, D., & Wang, Y. -C. (2005). A hierarchical classifier using new

support vector machine for automatic target recognition. Neural Networks,

18(2), 541–548.

Chen, Y.Q., Zhou, X.S., & Huang, T.S. (2001). One-class SVM for learning

in image retrieval. In Proceedings of the international conference on image
processing (pp. 34–37).

Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning,

20, 1–25.

Duda, R., Hart, P., & Stork, D. (2000). Pattern classification. New York: Wiley-

Interscience.

Fukunaga, K. (1990). Introduction to statistical pattern recognition (2nd ed.).

Boston: Academic Press.

Hastie, T., & Tibshirani, R. (1998). Classification by pairwise coupling.

Advances in neural information processing systems, 10, 507–513.

Kumar, S., Ghosh, J., & Crawford, M. M. (2002). Hierarchical fusion of

multiple classifiers for hyperspectral data analysis. Pattern Analysis and
Applications, 5(2), 210–220. Special issue on fusion of multiple classifiers.

Platt, J. (1999). Fast training of support vector machines using sequential

minimal optimization. Advance in Neural Information Processing Systems,

10, 336–342.

Platt, J. C., Cristianini, N., & Shawe-Taylor, J. (1999). Large margin DAGs

for multiclass classification. Advances in Neural Information Processing
Systems, 12, 547–553.

Shaik, J., & Yeasin, M. (2006). A progressive framework for two-way clustering

using adaptive subspace iteration for functionally classifying genes. In

Proceedings of the international joint conf. on neural networks (pp.

2980–2985).

Tax, D., & Duin, R. (1999). Data domain description using support vectors.

In Proceedings of european symposium on artificial neural networks (pp.

251–256).

Vural, V., & Dy, J.G. (2004). A hierarchical method for multi-class support

vector machines. In Proceedings of the international conference on machine
learning (pp. 105–112).

Wang, Y.-C.F., & Casasent, D. (2006). Hierarchical k-means clustering using

new support vector machines for multi-class classification. In Proceedings
of the international joint conf. on neural networks (pp. 3457–3464).

Wang, Y.-C.F., & Casasent, D. (2007). New weighted support vector k-means

clustering for hierarchical multi-class classification. In Proceedings of the
international joint conf. on neural networks.

Yuan, C., & Casasent, D. (2003). Support vector machines for class

representation and discrimination. In Proceedings of the international joint
conference on neural networks (pp. 1611–1616).

Yuan, C., & Casasent, D. (2005). Face recognition and verification with pose

and illumination variations and imposter rejection. Proceedings of the SPIE,

5779(29), 242–255.

Yu-Chiang Frank Wang received the B.S. degree in electrical engineering
from the National Taiwan University, Taipei, Taiwan, in 2001. From 2001
to 2002, he worked in the Division of Medical Engineering Research at the
National Health Research Institutes, Taiwan, as a research assistant, where he
was working on the design and development of ultrasound CT imaging systems.
He received his M.S. degree in electrical and computer engineering from
Carnegie Mellon University, Pittsburgh, Pennsylvania, in 2004. He is currently
a Ph.D. student in Carnegie Mellon University, and his research interests are
computer vision and pattern recognition.

David Casasent is a professor at Carnegie Mellon University, Pittsburgh,
Pennsylvania, in the Department of Electrical and Computer Engineering,
where he holds the George Westinghouse Chair. He is a fellow of the IEEE,
OSA, and SPIE and has received various best paper awards and other honors.
He is past president of SPIE and the International Neural Network Society.
He is the author of two books, editor of one text, editor of 70 journals and
conference volumes, and contributor to chapters in 20 books and more than
700 technical publications, on various aspects of optical data processing, image
pattern recognition, and product inspection.

